Strength and Conditioning for Running: Improving performance & injury prevention

Rob Thickpenny

ROB THICKPENNY PERFORMANCE COACHING

Strength & Conditioning Coaching Coach Development Sports Massage Therapy

07990 527135 rob@rtperformancecoaching.co.uk

My coaching background

- Performance strength and conditioning coach for 22 years
- \geq Honours degree in Sports Science & UKA level 3 performance coach (jumps)
- Coached and advised athletes who competed in London and Rio Olympics.
- \geq Experienced at providing performance solutions to athletes, semi-pro rugby, professional squash, golfers, academy footballers & international equestrian
- Former Physical Preparation National Coach Mentor/Lead at England Athletics (2011-2018)
- Collaborative work with Physiotherapists, Osteopaths and Sports Physicians to provide end stage rehabilitation & return to sport/play. Students as a pole vaulter

Represented GB

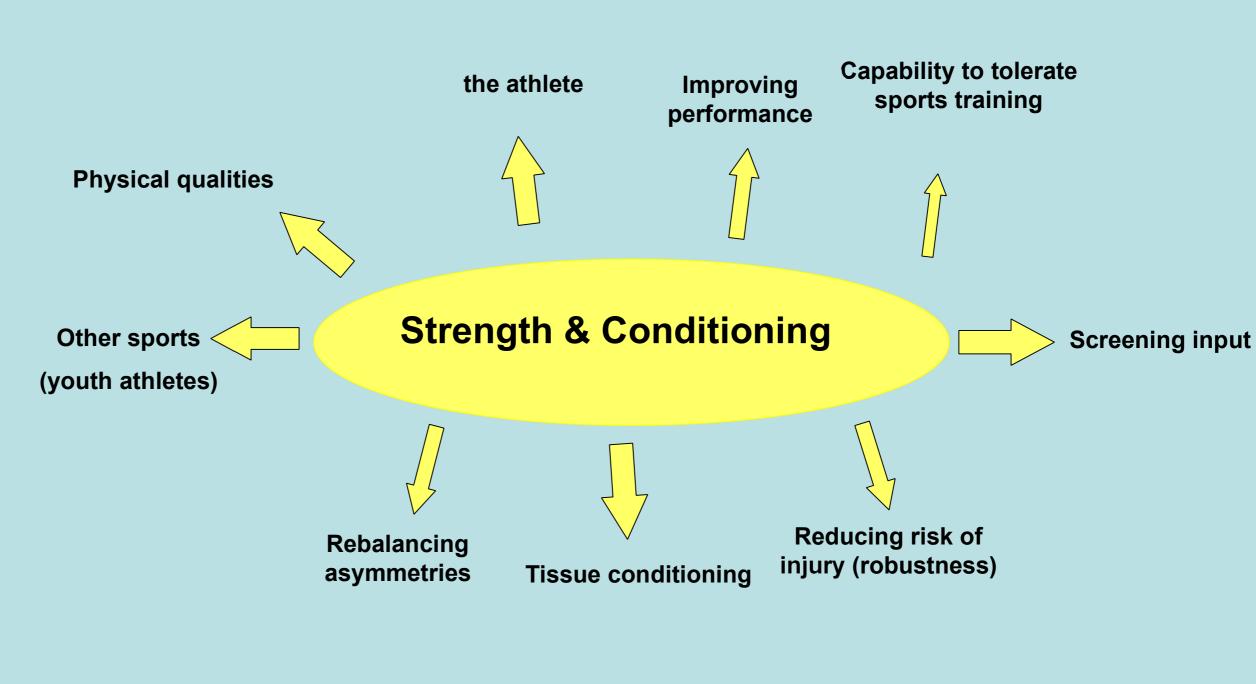
Strength and Conditioning

A process of systematic training which is designed to create the capacity for training and a platform for performance

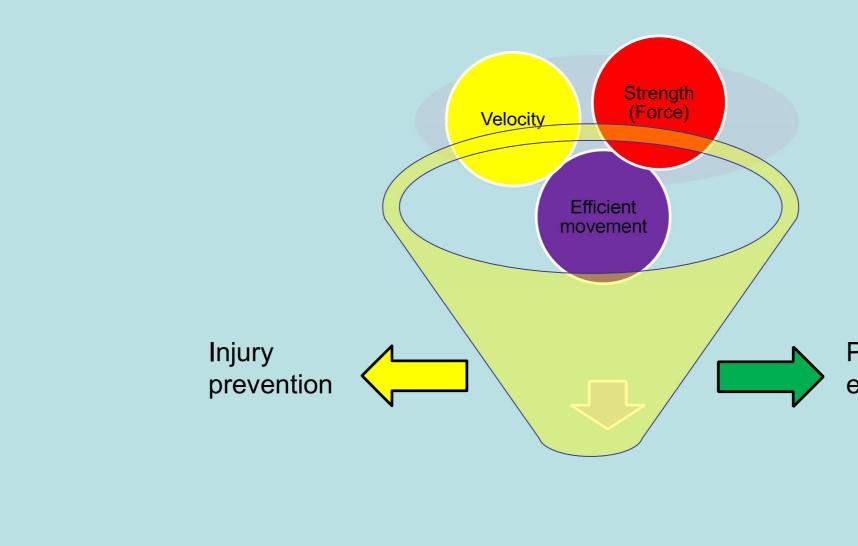

Why?

- Develop the physical qualities required to achieve the technical model
- Reach potential
- High quality movement earn the right to progress
- Other sports essential for developing youth athletes
- Injury avoidance robustness to injury under fatigue
- Muscular imbalances and tightness
- Work capacity

- Self myofascial release
- Longevity
 - Fun


Endurance running

- Key parameters:
 - VO₂ Max, VVO₂
 - Running Economy (RE)
 - Ground Reaction Forces (GRF) 3-4 x BW
 - Ground Contact times 0.2s (closer to 0.3s for non elite)
- Volume of running 50km/week
 - 2m average stride length



• @3x BW equates to 75000kg Maintaining health of

Event	Age of peak performance Men	Age of peak perfo Women
100m	26	25
200m	25	25
1500m	27	29
5000m	29	30
Marathon	31	33
TJ	25	28
Discus	25	25
Hammer	28	*

Performance enhancement

Strength and Conditioning

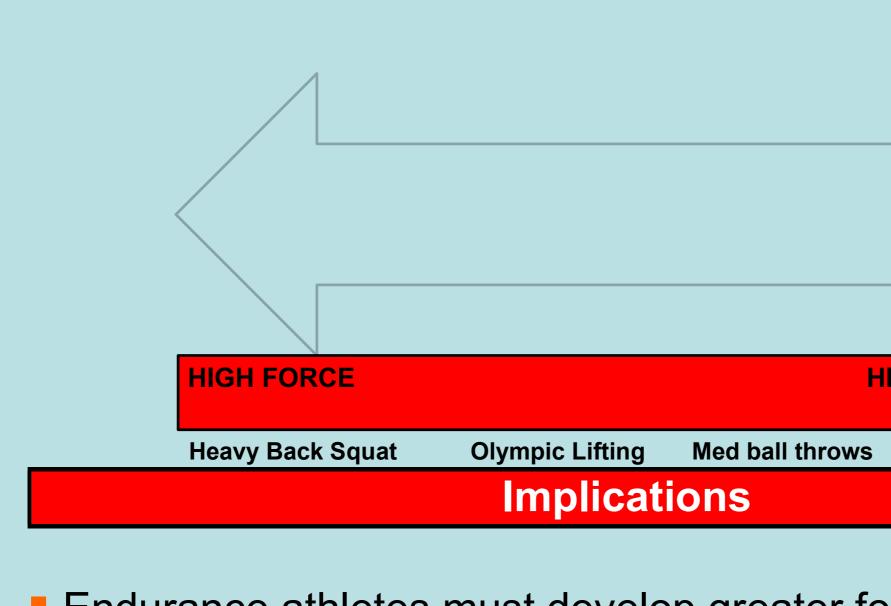
- S&C can help to improve all 3 components which in turn can create a more robust, powerful, faster athlete
- Movement skills are fundamental building blocks for good • performance.
- Quality of movement movement competence
- Without strength, stability, mobility, balance and coordination athletes cannot move efficiently or transfer force efficiently and have a higher risk of injury

Chek, P. (2000)

Primal Movement Patterns (Underpinning movements)

- Double leg: squat through to jumps
- Single leg: SL squat through to hopping
- Push: press up through to medicine ball chest throws
- Pull: pull-up through to overhead throws
- Rotation/twist: floor through to side throws

The Role of Strength Training & Transfer to Running


To optimise the bodies force, power and velocity capabilities specific for the athletes & event

- 10 cross country runners completed 9 weeks of explosive strength training (unloaded jumps & sprints) 5km Running time improved - no change in total volume of work completed between experimental and control group (Paavalainen, et al, 1999)
- Improved running economy & neuromuscular characteristics
- Stance phase limiting factor is the time frame the athlete has to express the force not the magnitude of force (Weyand et al, 2010).
- Better movement \rightarrow higher force producing capabilities $\rightarrow \uparrow$ velocity \rightarrow Improved running economy

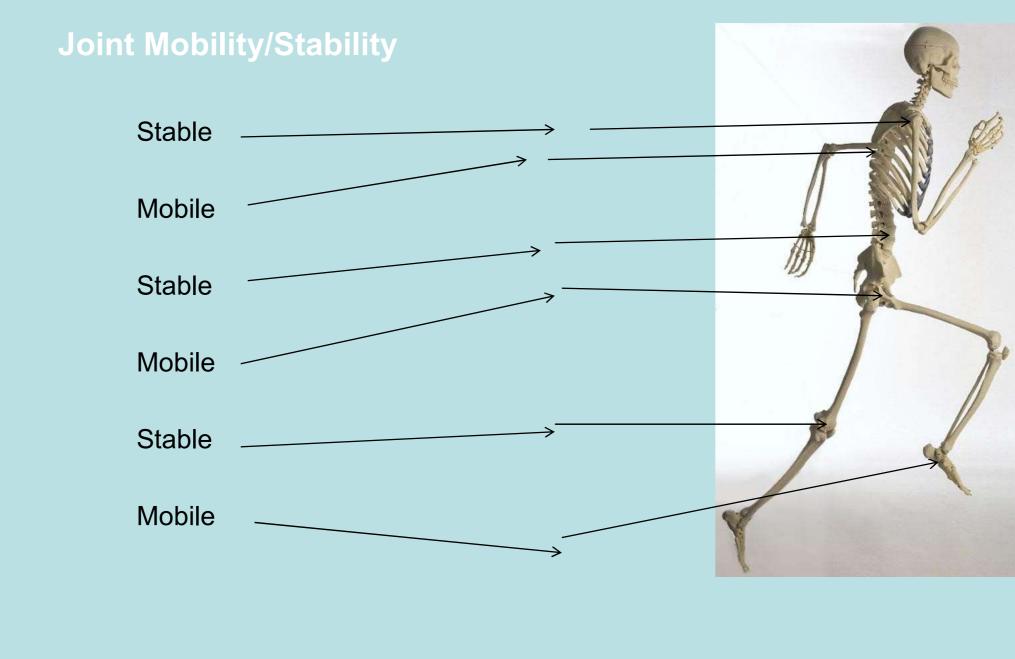
Strength – Speed Continuum

Max strength Strength speed Speed strength Max speed

Endurance athletes must develop greater force producing capabilities

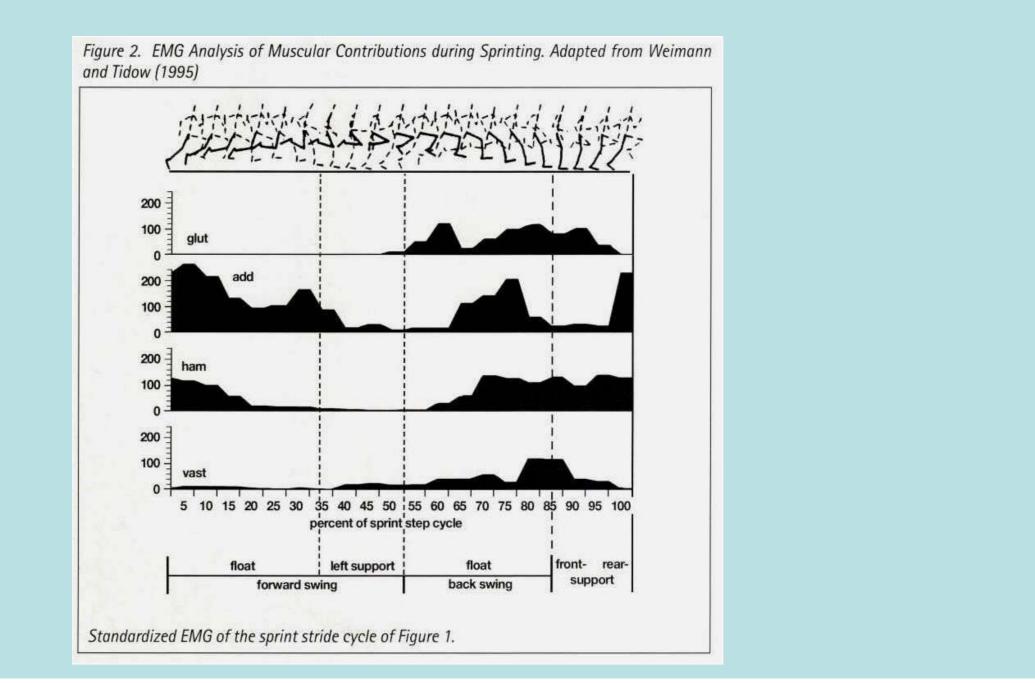
HIGHVELOCITY

Plyometrics


- Endurance athletes must develop a greater force <u>application</u> capability
- Not about developing maximum strength, but it is about a better quality of force generation' Zatsiorsky & Kraemer 2006

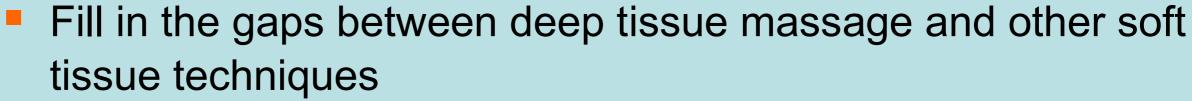
5 Areas of Injury Risk

Hamstring Hip / Groin Foot / Ankle

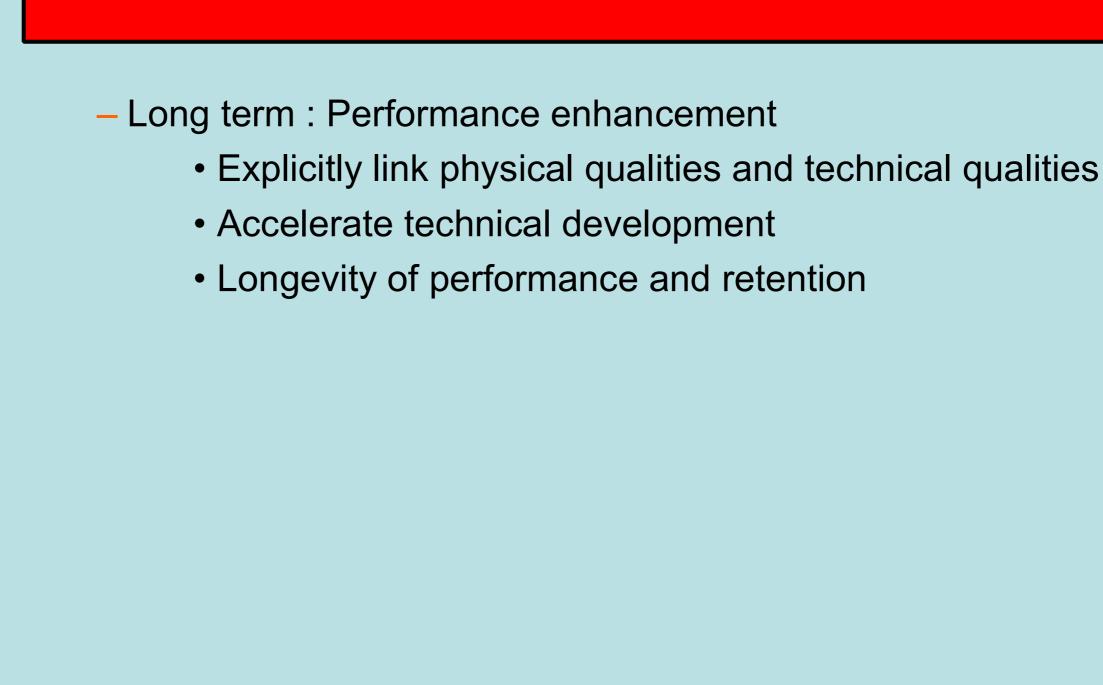

Lower Leg (shin)Lower Back

Based on 11 years of research with UKA World Class Talent Programme athletes

EMG analysis of high speed running



Self-Myofascial Release - Foam Rolling



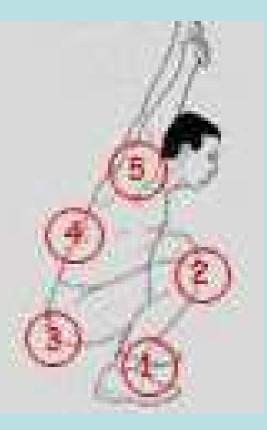
- Reduction of scar tissue and adhesions
- Realign collagen fibres
- Target trigger points
- Improved mobility and range of motion
- Improved quality of movement if correct training is prescribed

Short term: Problem solving

- Resolving an injury
- Reduction injury incidence and predisposition
- Athletes continue to present major physical limitations

Adapted Functional Movement Screen

- Knee to wall (ankle mobility)
- **Overhead squat**
- Step-over
- Forward lunge
- Active straight leg raise
- Thoracic rotation

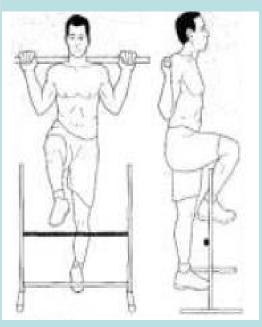


Overhead squat implications

- Limited mobility in the upper torso can be attributed to poor glenohumeral (5) and/or thoracic spine mobility (4).
- Limited mobility in the lower extremity including poor closed-kinetic chain dorsiflexion of the ankle (1) and/or poor flexion of the hip (3) may also cause poor test performance.

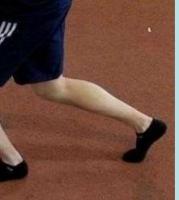
Considers:

Stance leg hip, knee and ankle stability and range of movement

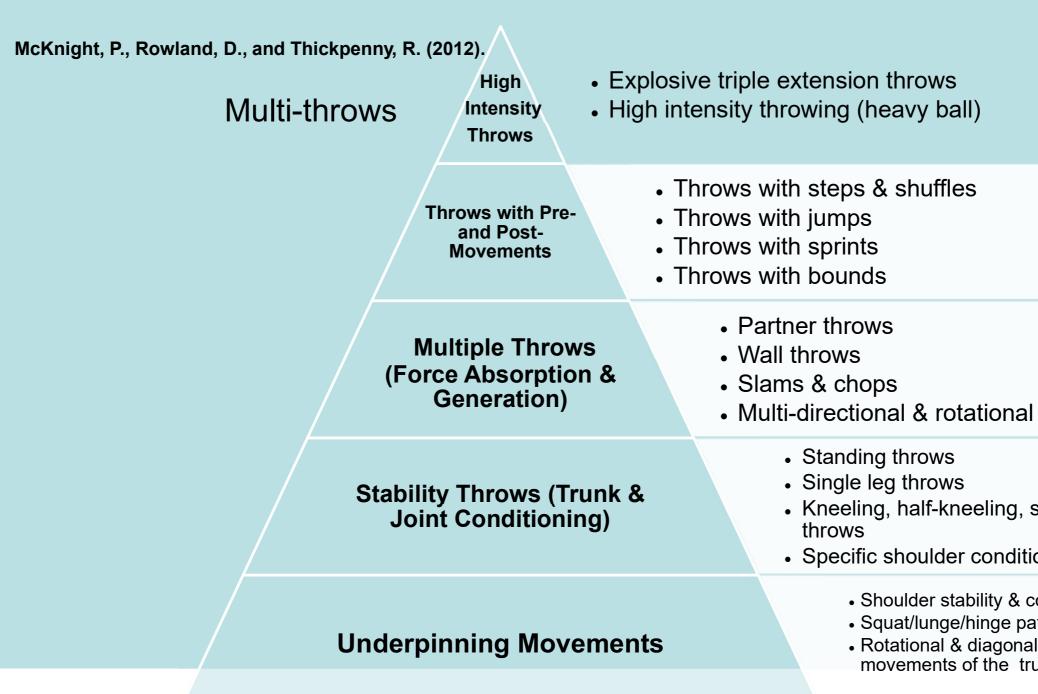

Closed chain hip extension stance leg Open chain hip, knee and ankle flexion of step leg

Issues:

Poor stability of stance leg – weak/tight gluteals 2, collapsing arch of the foot, poor range of movement Poor mobility of step leg 3,4,5 –


Knee to Wall

Normal range = 12-15cm



Benefits of throwing Medicine Balls

- Develop the essential physical qualities for athletic performance including running
- Ideal for foundational level athletes
- Coordinated triple extension of hip, knee ankle •
- Develop force production from proximal to distal via the trunk trunk conditioning benefits
- High release velocity at completion of movement manipulate the force-velocity time curve
- Tri-planar movement

- Development of athletic 'shapes' •
- Accessible in a club environment, sports hall or on a field

British Athletics

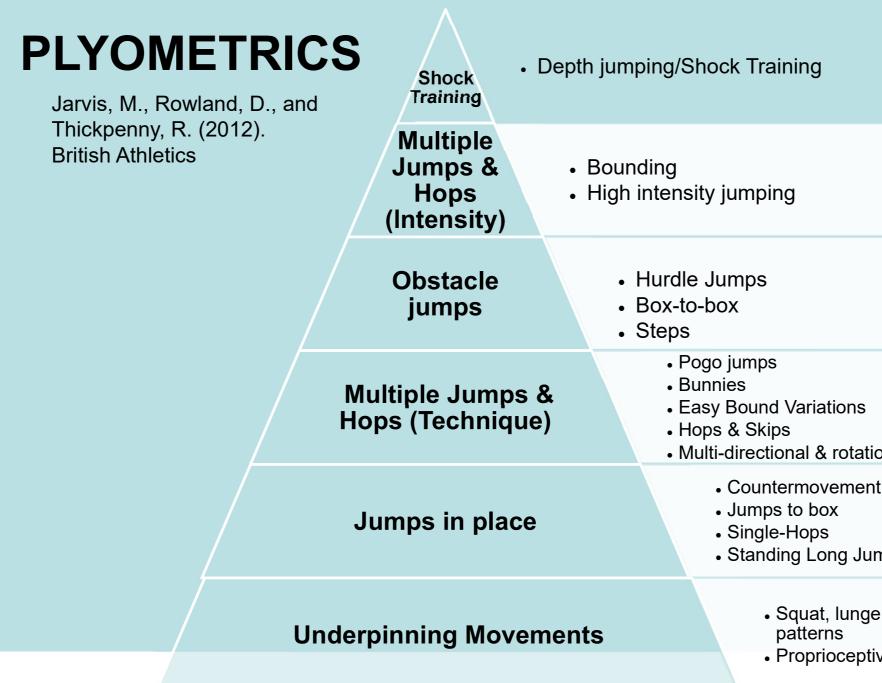
• Kneeling, half-kneeling, seated

Specific shoulder conditioning

 Shoulder stability & control Squat/lunge/hinge patterns Rotational & diagonal movements of the trunk

Plyometrics

- Plyometric exercises are a quick powerful movement using a pre-stretch or countermovement, that involves the stretchshortening cycle (SSC)
- The Myotatic stretch reflex is a protective mechanism
- Develops the elastic properties of the muscles and MTU
- Upper and lower body exercises can be performed
- Well developed postural strength and joint control before prescribing advanced methods of this training with throwers

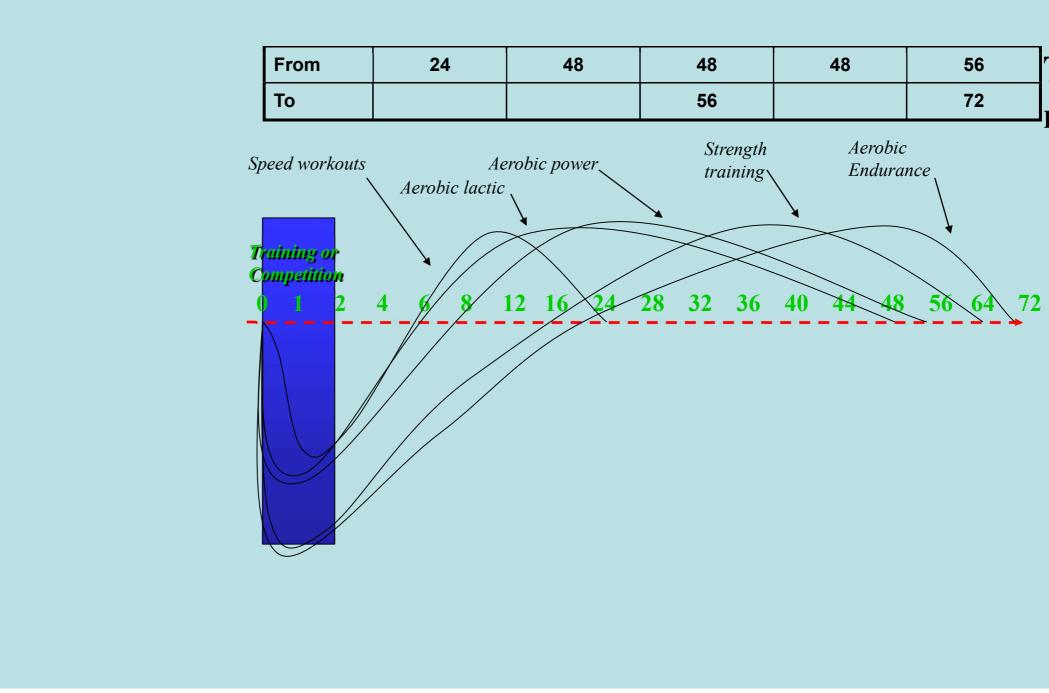

- Ability to withstand significant eccentric forces force absorption \rightarrow force production
- No pre-existing injuries (particularly knees and Achilles tendon) before attempting jumping type exercises
- Best performed on an even grass surface, sprung floor or heavy rubber gym mats.
- Recruitment of more type IIx fibres so positive implications for power sports and those wanting to engage in complex training

- **Quality** not quantity always minimum ground contact
- Slow SSC = >250ms; fast SSC = <250ms
- Observe excellent 'shapes' and the athlete must 'earn the right' to progress

Considerations

Recommended contacts per session: Beginner (no experience) 80–100 Intermediate (some experience) 100-140 Advanced (considerable experience) 120-140 (Baechle T., Earle R., 2000)

FMS tests including overhead squat, lunge and knee to wall (ankle mobility) will indicate movement competence or physical limitations that should be addressed and considered when progressing


anal
onal t jump
, Jamb
mp
e and hinge
ve work

Programming

- A process of systematic training which is designed to create the capacity for training • and a platform for performance
- Great sessions don't work in isolation
- Best programmes are the ones that combine not only the appropriate load but also at the right time with sufficient recovery
- The athlete must earn the physical right to move the programme forwards (Giles, • 2004) – physical competence

Training Types	Speed	Aerobic lactic	Aerobic Power	Strength training

Aerobic endurance

Time required for complete recovery (Platanov, 2 1988)

Beginner/Novice

- Beginner improve all biomotor abilities
- Beginners tend to respond to any training
- General adaptations occur without substantial fatigue
- Strength gains are principally neural minimal CSA change
- Beginners cannot train with sufficient load, intensity or volume to elicit fatigue after effects
- But they can develop all of the Fundamental Movement Patterns prepare them for performance loading

A Practical example for young athletes

• To be good at a movement = plenty of stimulus

- e.g. squat once a week for 12 weeks = 12 stimuli
- Not sufficient for motor development
- Squat as part of warm-up (3 x week) + squat 3 x week for 6 weeks = 36 stimuli (loaded and unloaded)
- Athlete's skill level 1. Loaded: Med Ball, Powerbag, strength band barbell & KB
- •Training loads for children: 50% of their maximum potential is very effective
- •The athlete must earn the physical right to move the programme forwards (Giles, 2004).

Reps, sets & volume load

Max Strength	 1-5 reps per set 15-25 reps total per exercise
Power	 2-5 reps per set 15-30 reps total
Strength Endurance	 5-8 reps per set 20-35 reps total
Motor Patterning/ Functional Hypertrophy	 8-12 reps 20-35 reps total
Conditioning	• 30-90 seconds per set
Training	focus and prescription

Physiological Adaptation	Strength	Endurance
Intensity of movement	>80% RM/max force if isometric	60-80% RM/ mod isometr force
Volume	3-6 sets, 1-6 reps/ 5-10 secs isometric	3-5 sets, 5-10 reps/ > 30- 60 secs if isometric
Fatigue	Not necessary	Necessary

	Stability
ic	<30% RM, skill/mvt or recruitment focus
	3-4 sets, 20-30 reps/ > 30- 60 secs if isometric
	Necessary

Specific adaptation (if competent movement)	1	Force capabilities	↑	Strength endurar
Weekly Mid	era	ocycle for a	CI	ub Endur

	MON	TUES	WEDS	THURS	Fri	SATURDAY	SUNDAY
ENERGY SYSTEM	EASY RUN	EXTENSIVE TEMPO	EASY RUN	SPEED ENDURANCE	REST	HILLS	STEADY STATE (Longest run)
PHYSICAL PREP		GENERALSTRENGTH		PLYOMETRICS/ MULTI-THROWS	REST	GENERAL STRENGTH	
WARM-UP	MOVEMENT PATTERNS	HURDLE MOBILITY	FOAM ROLLING	SKIPPING WITH ROPE	REST	FOAM ROLLING & HURDLE MOBILITY	

Improved sports specific movements

nce Athlete

WARM- DOWN	-	ORTS SSAGE		RUNK ITIONING	STRET	CHING			REST	TRUNK CON	IDITIONING		PMENTAL ICHING
		W	eek	ly Mi	cro	осу		e for a		lub Sp	rinte	r	
		М	ON	Tuesd	AY	WE	D	THURSDAY		Friday	SATUR	DAY	SUNDAY
CE & SI WORI				DRILL ACCELER/	-	RES	т	DRILLS/SPEE	ĒD		SPEED END – INTENSIV		REST
SPE WO	RK	EXPL	ING - Losive Ingth			RES	т	MULTI-THROV	ws	LIFTING – EXPLOSIVE STRENGTH			REST

GPE: WARM-UP	MOVEMENT PATTERNS	HURDLE MOBILITY	REST	HURDLE MOBILITY		MYOFASCIAL RELEASE & SKIPPING WITH ROPE	REST
GPE: COOL- DOWN		TRUNK CONDITIONING	REST	SPORTS MASSAGE		TRUNK CONDITIONING + SAND PIT FOOT CONDITIONING	REST
		Reco	mme	nded Rea	ading		

- Bompa, T.O. (2005). Periodization Training for Sports. Human Kinetics
- Baechle T.R., and Earle R.W. (2000). Essentials of Strength Training & Conditioning. Human Kinetics
- Zatsiorsky, V.M., and Kraemer, W.J. (2006). Science & Practice of Strength Training. Human Kinetics

- Radcliffe, J. (2015). High Powered Plyometrics. Human Kinetics
- Bosch, F. (2018). Strength Training and Coordination: An integrative Approach. 2010 Publishers.
- Cardinale, C., Newton, R. and Nosaka, K. (2011). Strength and Conditioning: Biological Principles and Practical Applications. WileyBlackwell.
- Gambetta, V. (2006). Athletic Development: The Art and Science of Functional Sports Conditioning. Human Kinetics.